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Abstract: Liver cancer remains one of the leading causes of cancer-related mortality worldwide, and early detection plays a crucial role in
improving patient survival rates. Traditional diagnostic methods often rely on manual interpretation of medical images, which can be time-
consuming, subjective, and prone to human error. Automatic liver cancer detection using deep convolution neural networks offers a powerful
solution by leveraging advanced feature extraction capabilities to identify malignant patterns in medical imaging data with high precision. The
proposed approach uses a deep learning model trained on liver CT or MRI scans to automatically learn discriminative features associated with
tumor regions, thereby reducing dependence on handcrafted features or manual annotation. By capturing both low-level and high-level visual
characteristics, the network can effectively differentiate between healthy tissues and cancerous lesions. Experimental evaluations in recent studies
show that deep convolution neural networks significantly enhance detection accuracy, sensitivity, and reliability compared to traditional machine
learning techniques. This method provides a scalable and efficient framework for supporting radiologists and improving the early diagnosis of
liver cancer, ultimately contributing to better clinical outcomes.
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1 INTRODUCTION

Recent advancements in artificial intelligence (Al) and deep learning have significantly reshaped automated dietary assessment
by enabling accurate food recognition and nutrient analysis from images. Traditional dietary monitoring techniques, such as
manual food diaries and self-reported intake, often suffer from inaccuracies due to user bias, memory limitations, and estimation
errors. To address these challenges, Al-driven food analysis systems have emerged as reliable and scalable solutions for objective
nutritional assessment, reducing human dependency and improving consistency in dietary data collection [1]. Deep learning
models, particularly convolutional neural networks (CNNs) and vision-based architectures, have demonstrated strong capability
in extracting discriminative visual features from food images for classification and nutrient estimation. These models leverage
large-scale food image datasets and integrated nutritional databases to map visual patterns to caloric and macronutrient
information. However, existing studies highlight that many systems are trained on constrained datasets and focus predominantly
on simple or Western food categories, limiting their generalization to diverse and region-specific cuisines [2].

Accurate estimation of portion sizes remains one of the most critical challenges in image-based nutrition analysis. Conventional
two-dimensional image approaches fail to capture depth and volume information, resulting in significant errors in calorie and
nutrient estimation. Recent research emphasizes the need for advanced computer vision techniques, multi-view analysis, and
intelligent learning models to improve the accuracy of portion estimation and the reliability of nutrition prediction systems [3].
Beyond food recognition and calorie estimation, personalized nutrition has gained substantial attention in recent years. Al-powered
recommendation and decision-support systems enable tailored dietary guidance based on individual health profiles, nutritional
goals, and eating patterns. Such personalized, data-driven nutrition systems have shown strong potential in healthcare, wellness,
and preventive medicine applications by supporting informed and adaptive dietary decision-making [4].

Motivated by these research developments, this project proposes Nutri Vision, an Al-based framework that integrates food
recognition, portion size estimation, nutrient prediction, and personalized dietary recommendations to deliver accurate, real-time,
and culturally adaptive nutrition insights.

2 LITERATURE SURVEY

Deep learning has emerged as a dominant approach in medical image analysis, particularly for automated cancer detection and
segmentation. Convolutional neural networks (CNNs) have been widely utilized due to their ability to automatically learn
hierarchical and discriminative features from radiological images.
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A systematic review by Anusha et al. analyzed multiple CNN-based architectures for tumor and cyst segmentation, concluding
that deep learning models significantly outperform traditional machine learning and manual analysis methods in terms of accuracy
and robustness [1]. In the context of liver cancer detection, several studies have proposed deep learning frameworks using CT and
MRI imaging modalities. Balaguer-Montero et al. developed a CT-based deep learning tool for automatic liver tumor detection
and delineation, demonstrating strong clinical relevance by improving diagnostic precision and reducing radiologist workload [2].

Similarly, Rahman et al. proposed an ensemble ResUNet—InceptionV4 model for automatic liver tumor segmentation that
effectively captures both spatial and contextual information from volumetric medical images, thereby improving segmentation
performance [3]. Recent research has also explored hybrid and advanced deep learning architectures to enhance liver cancer
detection further. Joshi et al. introduced an innovative approach that combines generative adversarial networks (GANs), ResNet,
and vision transformers to improve feature learning and generalization, particularly in limited-data scenarios. Their experimental
results showed notable improvements in detection accuracy compared to conventional CNN-based methods [4]. Jesi and Daniel
integrated differential CNNs with kernel extreme learning machines (KELM), achieving high classification accuracy while
maintaining computational efficiency [5]. Transfer learning has proven to be an effective strategy for addressing limited annotated
medical datasets. Elbashir et al. applied transfer learning techniques on ultrasound images for liver cancer detection, demonstrating
that pretrained models can significantly enhance performance while reducing training time and data requirements [6].

Survey-based studies further confirm the importance of transfer learning in early cancer detection systems, highlighting its role
in improving generalization and robustness across diverse imaging modalities [7]. Beyond liver cancer, deep learning
methodologies applied to other cancer types provide valuable insights for model design. Ruano et al. proposed robust texture
descriptors for pancreatic cancer detection using endoscopic ultrasonography, emphasizing the importance of domain-specific
feature extraction [8]. Earlier foundational work by Das et al. combined deep learning with classical image processing techniques
such as watershed transform and Gaussian mixture models, laying the groundwork for modern hybrid cancer detection systems
[9]. Hence, the literature demonstrates that deep learning-based medical image analysis significantly improves cancer detection
accuracy and reliability. However, challenges related to dataset diversity, model interpretability, and real-time clinical deployment
remain unresolved, motivating further research into more adaptive and efficient Al-driven diagnostic frameworks.

3 PROBLEM STATEMENT

Liver cancer is one of the most life-threatening malignancies worldwide, with high mortality rates primarily due to late
diagnosis and limited early detection mechanisms. Accurate and timely identification of liver cancer using medical imaging
modalities such as CT and MRI scans is essential for improving patient survival rates. However, existing diagnostic practices rely
heavily on manual interpretation by radiologists, which is time-consuming, subjective, and prone to human error, particularly when
tumors exhibit variations in size, shape, intensity, and location across patients and imaging conditions [10]. Conventional
computer-aided diagnostic systems and traditional machine learning approaches depend largely on handcrafted features and rule-
based image processing techniques. These methods often fail to capture the complex and hierarchical visual patterns present in
liver tumors, leading to reduced accuracy, poor generalization, and increased false positive or false negative rates. Moreover, many
existing CNN-based solutions are limited by single-scale feature extraction and lack robustness across diverse clinical datasets,
scanners, and real-world imaging variations.

Experimental evaluations further highlight the necessity for a more reliable and automated framework. Achieving high
accuracy, sensitivity, and generalization while avoiding overfitting is critical in medical image analysis, where diagnostic errors
can have severe clinical consequences. As demonstrated by analysis of training and validation performance, a robust system must
consistently learn discriminative features and maintain stable convergence across datasets to be suitable for clinical support.
Therefore, the core problem addressed in this research is the lack of a robust, fully automated, and accurate liver cancer detection
system that can effectively analyze CT and MRI images, learn hierarchical tumor features without manual intervention, and reliably
differentiate between cancerous and non-cancerous liver tissues [11]. Addressing this problem requires an end-to-end deep
convolutional neural network—based framework that improves diagnostic accuracy, efficiency, and reliability to support early
detection of liver cancer in real-world clinical settings.

4 EXISTING SYSTEM

Existing systems for liver cancer detection primarily rely on traditional image processing techniques and basic machine learning
or shallow deep learning models. In conventional approaches, medical images such as CT or MRI scans are manually analyzed by
radiologists, where diagnosis depends on visual inspection and clinical experience. Although effective to some extent, this manual
process is time-consuming, subjective, and susceptible to human fatigue and interpretation errors, especially when dealing with
subtle tumor patterns or low-contrast images.
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Earlier automated systems utilize classical image processing methods, including thresholding, edge detection, region growing,
and texture-based feature extraction. These techniques depend heavily on handcrafted features such as intensity values, shape
descriptors, and texture statistics [12]. However, handcrafted features are limited in their ability to represent the complex and
heterogeneous nature of liver tumors, which vary significantly in size, shape, texture, and location across patients. As a result,
these systems often struggle to detect tumors accurately, particularly in noisy or low-quality medical images.

Some existing solutions incorporate basic convolutional neural network (CNN) architectures to improve detection performance.
While CNN-based systems reduce the need for manual feature design, many of these models extract features at a single scale and
lack deep hierarchical representation learning. Consequently, they fail to capture both low-level texture details and high-level
semantic information required for precise differentiation between cancerous and healthy liver tissues. Additionally, such models
often generalize poorly to diverse datasets, scanners, or imaging conditions. Existing liver cancer detection systems provide limited
precision, reduced robustness, and insufficient reliability for real-world clinical deployment. These limitations highlight the need
for a more advanced, fully automated, and deep learning—driven framework capable of learning discriminative features directly
from medical images and delivering consistent diagnostic performance.

5 PROPOSED SYSTEM

The Proposed Automatic Liver Cancer Detection System is designed as an intelligent deep learning—based framework for
accurate and automated identification of liver cancer from medical imaging data. The methodology integrates deep convolutional
neural networks (DCNNGs) for feature extraction and classification, along with preprocessing and optimization techniques to ensure
high accuracy, robustness, and reliability. The system aims to support radiologists by providing fast, consistent, and objective
diagnostic assistance using CT and MRI scans.

5.1. System Overview

The proposed system follows a modular and end-to-end architecture consisting of image acquisition, preprocessing, liver region
analysis, feature extraction using DCNN, classification, and result visualization modules. Medical images acquired from CT or
MRI scanners are processed through a deep learning pipeline that automatically learns discriminative features of cancerous and
non-cancerous liver tissue. The overall methodology focuses on:

e Automated liver cancer detection from CT and MRI images
e Deep feature extraction without handcrafted features

e High accuracy and generalization across diverse datasets

e Reliable classification of cancerous and normal liver tissues

5.2. Image Acquisition and Preprocessing

Liver CT or MRI images are collected from standard medical imaging datasets or hospital sources. The acquired images are
resized and normalized to meet the deep convolutional neural network's input requirements. Preprocessing operations such as noise
reduction, contrast enhancement, intensity normalization, and image standardization are applied to improve visual clarity and
reduce the impact of imaging artifacts. These steps enhance the system's robustness across varying imaging conditions and scanner
settings.

5.3. Deep Feature Extraction Using DCNN

Deep feature extraction is performed using a multi-layer Deep Convolutional Neural Network. Convolutional layers
automatically learn low-level features such as edges, textures, and intensity variations, while deeper layers capture high-level
semantic features including tumor shape, size, and spatial distribution. Pooling layers reduce spatial dimensionality while
preserving crucial structural information, thereby improving computational efficiency and generalization.

5.4. Liver Cancer Classification
The extracted deep features are passed to fully connected layers followed by a softmax or sigmoid activation function to
perform binary classification. The model predicts whether the input image belongs to the cancerous or non-cancerous class.

Training is carried out using labeled datasets with optimization algorithms such as Adam, along with regularization techniques to
prevent overfitting. This design ensures stable convergence and high classification accuracy.
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5.5. Training and Optimization Strategy

The DCNN model is trained over multiple epochs using a supervised learning approach. During training, the network
minimizes classification loss while maximizing detection accuracy. Validation data is used to monitor generalization performance,
ensuring minimal divergence between training and validation accuracy. This strategy results in a well-generalized model capable
of maintaining high accuracy on unseen data.

5.6. Performance Evaluation and Accuracy Enhancement

The performance of the proposed system is evaluated using standard metrics such as accuracy, precision, recall, F1-score, and
confusion matrix analysis. High true positive rates ensure effective identification of cancer cases, while low false positive rates
reduce unnecessary diagnostic alerts. Experimental evaluation results demonstrate that the proposed DCNN-based system achieves
significantly higher accuracy and reliability compared to traditional and shallow learning approaches.

5.7. Control Logic and Workflow

The proposed system follows the sequential workflow outlined below:
e  Acquire liver CT/MRI image
Preprocess the image
Extract deep features using DCNN
Classify liver tissue as cancerous or non-cancerous
Evaluate prediction confidence
e Display diagnostic results to the user
This structured workflow ensures efficient processing, minimal delay, and consistent detection performance.

6 SYSTEM ARCHITECTURE

The Proposed system architecture illustrates the complete workflow of the Automatic Liver Cancer Detection System using a
Deep Convolutional Neural Network (DCNN). The architecture is designed to process medical images efficiently and provide
accurate diagnostic results with minimal human intervention. Each component of the system plays a specific role in ensuring high
accuracy and reliability.
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Fig. 1. System Architecture
6.1. Input Layer

The input layer receives CT or MRI liver scan images. These medical images serve as the system's raw data. The quality and
resolution of the input images are crucial, as they directly influence the effectiveness of feature extraction and classification in
later stages. Inputs are:

e CT liver scans
e  MRI liver scans

6.2. Preprocessing Module

The preprocessing layer enhances image quality and standardizes the input for deep learning analysis. This step reduces noise
and variability in medical images acquired from different scanners and under varying conditions. The preprocessing operations
include:
o Image Resizing: Adjusts images to a fixed size compatible with the CNN model.
e Normalization: Scales pixel intensity values to a standard range to stabilize training.
e Noise Reduction: Removes unwanted artifacts and noise to improve clarity.

This stage improves robustness and helps the model focus on meaningful tumor-related features.
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6.3. Deep CNN Model

This is the core component of the system where automatic feature learning and representation take place. The architecture may
use pretrained or custom CNN models such as ResNet or VGG. The Deep CNN model consists of:
e Convolutional Layers: Extract low-level features such as edges, textures, and intensity variations from liver
images.
e Pooling Layers: Reduce spatial dimensions while retaining essential features, improving computational
efficiency and generalization.
e Fully Connected Layers: Combine extracted features and learn complex patterns related to tumor shape, size,
and location.
This hierarchical learning allows the network to capture both low-level and high-level features, enabling accurate
differentiation between healthy and cancerous tissues.

6.4. Classification Layer

The classification layer converts learned features into final predictions.
e Soft-max / Sigmoid Activation Function: Produces probability scores for each class.
e Binary Classification Output:
o  Cancer Detected
o No Cancer
This layer determines the presence or absence of liver cancer based on learned representations.

6.5. Output Layer

The Output layer presents the final diagnostic results in an interpretable form. Outputs include:
e Diagnosis Result: Cancer detected or not detected
e Confidence Score: Probability indicating the model’s certainty

7 ALGORITHMS USED

The Proposed Automatic Liver Cancer Detection System employs deep learning—based algorithms to achieve accurate and
reliable detection of liver cancer from CT and MRI images. The core algorithms used in this system are Deep Convolutional Neural
Networks (DCNN) and Transfer Learning—based CNN models (Res-Net/VGG). These algorithms enable automatic feature
extraction, robust classification, and high detection accuracy without manual intervention.

7.1. Deep Convolutional Neural Network (DCNN)

Deep Convolutional Neural Networks form the primary algorithm used for liver cancer detection. DCNNs automatically learn
discriminative features from medical images through multiple convolutional and pooling layers, eliminating the need for
handcrafted feature extraction. For an input liver image I, the convolution operation is defined as:

F=IxK+b

e [=input image

e K= convolution kernel

e  b=bias term

e F=extracted feature map

The DCNN consists of:
e Convolutional layers to extract low-level (edges, textures) and high-level (tumor shape, size) features
e Pooling layers to reduce spatial dimensions and improve generalization
e  Fully connected layers to perform classification

This hierarchical feature learning enables the model to differentiate between cancerous and non-cancerous liver tissues accurately.

IJERSEM@2026 https://doi.org/10.58482/ijersem.v2il.7 49


http://www.ijersem.com/
https://doi.org/10.58482/ijersem.v2i1.7

@ International Journal of Emerging Research in Science, Engineering, and Management
—\— Vol. 2, Issue 1, pp.45-53, January 2026.

| JERSEM www.ijersem.com elSSN-3107-9075

7.2. Transfer Learning Algorithm (ResNet / VGG)

Transfer learning is employed to enhance model accuracy and reduce training complexity by utilizing pretrained CNN
architectures such as ResNet or VGG. These models are pretrained on large-scale image datasets and fine-tuned using liver CT or
MRI images. The transfer learning process involves:

e Retaining pretrained convolutional layers for feature extraction
e Fine-tuning higher layers using medical imaging data
e Replacing the final classification layer for binary cancer detection

The classification output is computed using a sigmoid activation function:
1

P=
1+eZ

where:
e  P=probability of liver cancer
e z=weighted sum of extracted features

Transfer learning improves convergence speed, reduces overfitting, and ensures better generalization across diverse imaging
conditions and datasets.

8 RESULTS

The experimental setup of the proposed Automatic Liver Cancer Detection System is designed to evaluate the performance of
deep learning—based liver cancer classification under realistic clinical conditions. The experiments assess the system's
effectiveness in accurately detecting cancerous and non-cancerous liver tissue from CT and MRI images using Deep Convolutional
Neural Networks. The evaluation is carried out using appropriate hardware resources, software frameworks, datasets, and
standardized performance metrics.

8.1. Hardware Requirements

The experimental analysis was conducted on a computing platform with the following hardware specifications:
e  Processor: Intel Core 15 /17 or equivalent
e RAM: 8 GB or higher
e GPU: NVIDIA GPU with CUDA support (for accelerated training)
e Storage: Minimum 256 GB
e Display: Standard monitor for visualization of results
These hardware resources ensure efficient model training, faster convergence, and reliable performance evaluation.

8.2. Software Environment

The software environment used for system development and experimentation includes:
e  Operating System: Windows 10 / Linux
Programming Language: Python
Deep Learning Framework: TensorFlow / PyTorch
Image Processing Library: OpenCV
Machine Learning Library: Scikit-learn
e Development Tools: Jupyter Notebook, PyCharm
This software stack supports model development, training, testing, and result visualization.

8.3. Dataset Description

The proposed system was trained and evaluated using liver medical imaging datasets consisting of CT and MRI scans. The
dataset includes:

e Cancerous liver images

e Non-cancerous (normal) liver images

e Variations in tumor size, shape, intensity, and location

e Images acquired under different imaging conditions and scanners
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8.4. Model Training and Configuration

The Deep Convolutional Neural Network model was trained using labeled liver CT/MRI images. Transfer learning techniques
using pretrained models such as ResNet or VGG were applied to improve learning efficiency and accuracy. Hyperparameters,
including learning rate, batch size, number of epochs, and optimizer settings, were tuned based on validation performance.
Optimization algorithms such as Adam were employed to minimize loss and stabilize training. Regularization techniques were
used to prevent overfitting and ensure robust performance on unseen data.

8.5. Experimental Procedure

The experimental workflow followed the steps outlined below:

1. Acquire liver CT or MRI images
Perform image preprocessing (resizing, normalization, noise reduction)
Extract deep features using DCNN
Classify images as cancerous or non-cancerous
Evaluate prediction confidence
Record accuracy, loss, and classification metrics

7. Analyze training and validation performance

This structured procedure ensures consistency and repeatability of experiments.

A

8.6. Performance Evaluation

The performance of the proposed system was evaluated using standard classification metrics, including accuracy, precision,
recall, F1-score, and confusion matrix analysis. Training and validation accuracy and loss curves were analyzed to assess model
convergence and generalization capability. The experimental results demonstrate that the proposed DCNN-based system achieves
high accuracy, low error rates, and reliable liver cancer detection performance across different test cases.

8.7. Results

This section presents the experimental results obtained from the proposed Automatic Liver Cancer Detection System. It
discusses its performance in terms of classification accuracy, detection reliability, model convergence, and clinical applicability.
The results demonstrate the effectiveness of the Deep Convolutional Neural Network (DCNN)-based approach under realistic
medical imaging conditions. The learning behavior of the proposed DCNN model is evaluated using training and validation
accuracy curves, as shown as given below.
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Fig. 1. Training and validation accuracy graph
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The graph demonstrates a steady increase in both training and validation accuracy over successive epochs. The small gap
between the two curves indicates that the model generalizes well to unseen data and does not overfit. This behavior confirms that
the network effectively learns discriminative features relevant to liver cancer detection. The convergence performance of the model
is analyzed using the training and validation loss curves illustrated in Fig. 2.
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Fig. 2. Training and Validation Loss Graph

The gradual decrease in loss values across epochs indicates effective optimization and stable learning. The close alignment
between training and validation loss further confirms that the DCNN captures intrinsic liver tumor patterns while maintaining
robustness across different samples.

9 CONCLUSION

This paper presents a deep learning-based Automatic Liver Cancer Detection System for analyzing CT and MRI images with
high accuracy and reliability. The proposed framework utilizes deep convolutional neural networks to automatically learn
discriminative features and classify liver images without relying on handcrafted features or manual intervention. Experimental
results demonstrate that the system achieves strong detection performance with stable training behavior and effective
generalization to unseen data. The high accuracy and low error rates indicate the suitability of the proposed approach for supporting
early liver cancer diagnosis and reducing diagnostic subjectivity. Compared to traditional image analysis and conventional machine
learning methods, the proposed system improves automation, efficiency, and diagnostic consistency. Future work will focus on
enhancing tumor localization, extending the model to multi-class liver disease detection, and validating the framework on larger,
multi-center clinical datasets to improve real-world applicability further.
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