

# AI-Driven Smart Healthcare Assistant

<sup>1</sup>V. Gopi, <sup>2</sup>M. Ramya, <sup>3</sup>N. Mahathi Saisree, <sup>4</sup>V. Aravind Kumar Reddy, <sup>5</sup>K. Vishnu Vardhan, <sup>6</sup>K. Yaswanth Yadav

Department of CSE, Siddartha Institute of Science and Technology, Puttur, India.

<sup>1</sup>[nadhw.gopi@gmail.com](mailto:nadh.gopi@gmail.com), <sup>2</sup>[macharamya006@gmail.com](mailto:macharamya006@gmail.com), <sup>3</sup>[nmahathisaisree@gmail.com](mailto:nmahathisaisree@gmail.com), <sup>4</sup>[vvaravindreddy19@gmail.com](mailto:vvaravindreddy19@gmail.com),  
<sup>5</sup>[kanakampativishnu@gmail.com](mailto:kanakampativishnu@gmail.com), <sup>6</sup>[yashuyadavyashu444@gmail.com](mailto:yashuyadavyashu444@gmail.com)

**Abstract:** The AI-powered healthcare assistant is designed to support individuals in understanding medical information and improving overall health management. A common challenge faced by patients is the inability to clearly interpret medical prescriptions, especially when they are handwritten, unclear, or rewritten, which often leads to medication errors and health risks. The proposed system addresses this issue by automatically analyzing prescriptions and translating them into simple, user-friendly explanations. It provides precise details about prescribed medicines, including their purpose, dosage instructions, and safety precautions, thereby enhancing patient awareness and reducing misunderstanding. Beyond prescription interpretation, the system offers personalized wellness and lifestyle recommendations based on user-specific inputs. These recommendations include dietary suggestions, exercise plans, and healthy daily habits to support long-term physical well-being. By delivering tailored guidance, the system enables users to take a more active role in maintaining their health. An innovative aspect of the project is its voice-based analysis module, which examines speech patterns to detect indicators of stress, anxiety, or emotional imbalance. This feature enables early identification of potential mental health concerns and promotes timely intervention. By integrating physical health assistance with proactive mental health monitoring, the proposed system provides a comprehensive, intelligent, and user-centric healthcare solution.

**Keywords:** Artificial Intelligence, Deep Learning, Machine learning, Healthcare Assistant.

## 1 INTRODUCTION

Recent advancements in artificial intelligence (AI) have significantly transformed innovative healthcare systems by enabling intelligent automation, personalized decision support, and improved accessibility to medical services. Modern AI techniques, including machine learning, deep learning, and generative AI, have demonstrated strong potential to assist patients with health-related understanding, diagnostic support, and wellness management. These technologies reduce dependence on healthcare professionals for routine interpretation tasks and enhance the efficiency and scalability of healthcare delivery [1]. Despite these advancements, a significant challenge in healthcare remains poor health literacy among patients, particularly in understanding medical prescriptions and treatment instructions. Unclear or handwritten prescriptions often lead to confusion, incorrect medication usage, and adverse health outcomes. Recent studies emphasize that AI-powered healthcare assistants can bridge this gap by converting complex medical terminology into simple, user-friendly explanations, thereby empowering patients to make informed health decisions and reducing medication-related errors [2].

Along with physical health challenges, mental health has become an equally important concern in modern healthcare systems. Stress, anxiety, and emotional disorders often remain undetected due to the lack of continuous monitoring and early intervention mechanisms. AI-based systems capable of analyzing behavioral and speech patterns have shown promise in identifying early signs of psychological distress, enabling proactive mental health support and timely intervention [3]. Personalized healthcare and lifestyle recommendation systems have gained significant attention due to their ability to adapt health guidance based on individual user data, habits, and wellness goals. AI-driven personalized diet plans, exercise routines, and daily lifestyle suggestions improve long-term health outcomes and support preventive healthcare. Such intelligent, user-centric systems align with the vision of next-generation smart healthcare by integrating physical health assistance with proactive mental well-being support into a unified framework [4].

## 2 LITERATURE SURVEY

The Integration of artificial intelligence with secure data management technologies has significantly strengthened smart healthcare systems. Rawat *et al.* proposed an AI-based blockchain framework for smart healthcare, emphasizing secure storage, transparent medical data sharing, and enhanced patient privacy [2]. Their study demonstrates that blockchain-assisted AI systems improve trust, integrity, and security in decentralized healthcare environments [1]. Machine learning and artificial intelligence techniques have been widely explored for improving intelligence and automation in healthcare systems. Salama and Al-Turjman discussed the application of AI-driven models for disease prediction, health monitoring, and decision support. Their work highlights that machine learning algorithms can efficiently analyze complex healthcare data and support accurate and timely healthcare decisions [3].

The transformation of healthcare into intelligent and patient-centric systems has been discussed by Wong *et al.* Their study emphasizes continuous monitoring, intelligent automation, and personalized healthcare services as key components of innovative healthcare [4]. The authors highlight that AI-enabled systems enhance accessibility, reduce operational costs, and improve the quality of healthcare delivery. The Internet of Medical Things (IoMT) has emerged as a critical enabler of innovative healthcare applications. Awotunde *et al.* examined IoMT-based healthcare systems that utilize wearable sensors and connected medical devices for real-time health monitoring. Their research demonstrates the effectiveness of IoMT in remote patient care, emergency response, and chronic disease management [5].

Citizen-focused smart healthcare solutions have gained considerable attention in recent research. Corsi *et al.* presented a systematic review emphasizing the importance of usability, personalization, and accessibility in healthcare technologies. Their findings indicate that AI-driven healthcare systems should prioritize end-user engagement to ensure effective adoption and long-term usability [6]. Security challenges in edge-IoT-based healthcare systems have been addressed by AbdulRaheem *et al.* The authors proposed a lightweight encryption technique to ensure secure data transmission and confidentiality in resource-constrained healthcare environments. Their approach supports real-time healthcare services while maintaining system efficiency and energy performance [7].

Interoperability remains a significant challenge in heterogeneous innovative healthcare environments. Shahzad *et al.* introduced an ontology-driven framework for healthcare service integration that improves coordination and intelligent service delivery. By structuring medical knowledge using ontologies, their approach enables context-aware and interoperable healthcare services [8]. Location-aware healthcare frameworks have been explored to enhance patient mobility support and emergency response. Bhadoria *et al.* surveyed IoT-based location-aware innovative healthcare systems that provide real-time tracking and timely medical assistance. Their study highlights the importance of intelligent communication in the care of elderly and high-risk patients [9]. Cyber-physical systems integrated with artificial intelligence have been proposed to improve quality of service in healthcare environments. Patan *et al.* demonstrated that AI-based optimization and filtering techniques enhance reliability, reduce latency, and ensure continuous healthcare service delivery under dynamic conditions [10].

Wireless medical sensor networks form a foundational component of modern e-healthcare systems. Adarsh and Kumar examined the role of sensor networks in real-time collection and transmission of physiological data. Their study emphasizes efficient sensor communication as a key factor in intelligent healthcare monitoring and diagnosis support [11]. Bohr and Memarzadeh have analyzed the rapid rise of artificial intelligence in healthcare applications. Their work discusses the impact of AI on diagnostics, treatment planning, and patient engagement, providing a comprehensive overview of how AI technologies are reshaping modern healthcare systems [12].

### 3 PROBLEM STATEMENT

Many individuals struggle to accurately understand medical prescriptions due to complex medical terminology, abbreviations, and unclear writing styles. This lack of clarity often confuses medication purpose, dosage, and precautions, which can lead to improper medicine usage and potential health risks. The absence of an automated and user-friendly system to interpret prescriptions highlights a critical gap in patient-centered healthcare support. In addition to prescription-related challenges, most existing healthcare and wellness solutions fail to provide personalized guidance tailored to individual health conditions. Available systems generally offer generic diet and lifestyle recommendations that do not consider personal medical history, daily habits, or wellness goals. Such non-personalized approaches reduce the effectiveness of health routines and limit long-term physical well-being [13].

Early identification of mental health conditions such as stress and anxiety remains a significant challenge due to the subtle nature of their symptoms. Individuals often fail to recognize early emotional or psychological changes without expert assistance, leading to delayed intervention. The lack of accessible tools capable of detecting mental health indicators at an early stage further increases the risk of prolonged mental health issues.

Current healthcare tools operate in isolation and do not integrate physical health management with mental well-being assessment. Most systems address individual health aspects separately, resulting in fragmented and incomplete healthcare guidance. This lack of integration underscores the need for an intelligent, AI-driven healthcare system that integrates prescription interpretation, personalized wellness planning, and early detection of mental health conditions within a unified framework.

#### 4 EXISTING SYSTEM

Existing drug information applications primarily provide generic and standardized details about medicines, such as usage, dosage, and side effects. These applications follow a one-size-fits-all approach and do not adapt the information based on individual user factors such as age, health condition, allergies, or prescription history. As a result, the information delivered is often limited in relevance and does not fully support personalized medication understanding. Similarly, most fitness and wellness applications offer generic workout routines and diet plans without considering the user's medical background. These recommendations are typically standardized and lack alignment with specific health conditions or ongoing treatments. The absence of medical context reduces the effectiveness of such plans and may pose potential health risks for users with special medical needs.

Mood and emotion detection applications largely rely on manual input methods, such as journaling or self-reported emotional tracking. Users are required to regularly type their feelings, which is time-consuming and often inconsistent. These systems lack the ability to automatically detect stress, anxiety, or emotional changes using behavioral or voice-based data, limiting their effectiveness in early mental health identification. In addition, existing AI-based health chatbots primarily answer general health-related queries. While they provide basic informational support, they are unable to analyze medical prescriptions or interpret user emotions through tone or voice patterns. This limitation prevents them from delivering accurate, personalized, and context-aware healthcare assistance, resulting in fragmented and incomplete support for users.

#### 5 PROPOSED SYSTEM

The Proposed system introduces an AI-driven healthcare assistant designed to simplify the interpretation of medical prescriptions and enhance patient understanding. The system automatically analyzes medical prescriptions and converts complex medical terminology into clear and easy-to-understand explanations. By providing detailed information about the purpose, dosage, and usage instructions, the system reduces confusion and supports safe and accurate medication usage. To support long-term physical well-being, the system incorporates a personalized wellness-planning module that generates tailored routines based on individual health conditions and goals. This module creates daily tasks, exercise plans, and lifestyle recommendations tailored to each user. By adapting wellness guidance to personal health requirements, the system improves the effectiveness and safety of fitness and lifestyle management.

The proposed system also includes an intelligent voice analysis module for early detection of stress, anxiety, and emotional fluctuations. By analyzing speech patterns, tone, and vocal features, the system identifies potential emotional changes without requiring user input. This enables proactive mental health monitoring and encourages timely awareness and intervention. The system integrates physical health data, mental health insights, and prescription information into a unified platform. All user-related health information is presented through a centralized dashboard, providing a comprehensive and holistic view of overall well-being. This integrated approach ensures personalized, continuous, and user-centric healthcare support within a single intelligent system. The system architecture is given in Fig. 1.

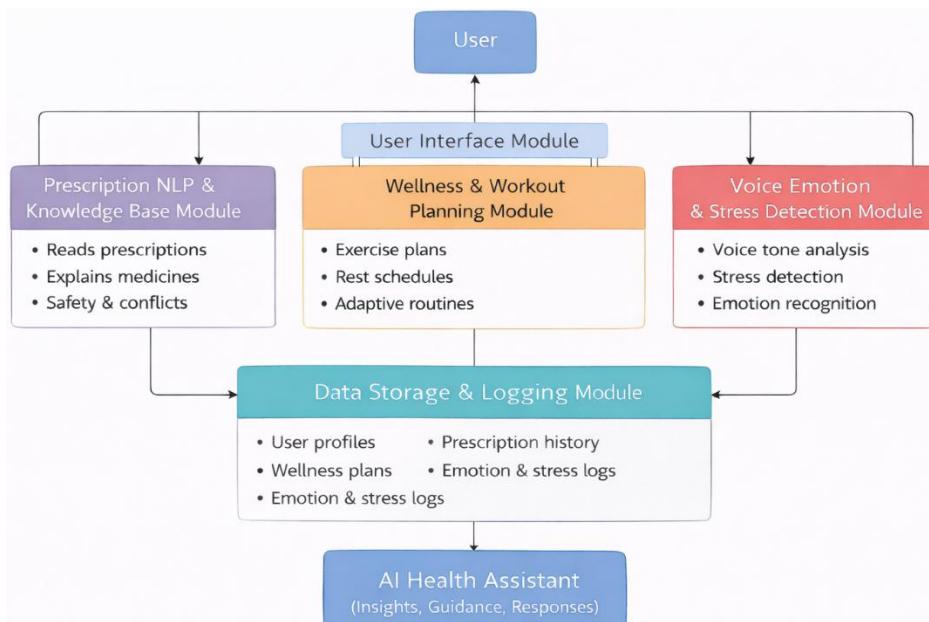


Fig. 1. System Architecture

The proposed system architecture is designed to deliver an intelligent and integrated healthcare assistant that supports users in understanding medical prescriptions, managing physical wellness, and monitoring mental health. The architecture begins with the User, who interacts with the application through the User Interface Module. This module serves as the primary interaction layer, allowing users to input medical prescriptions, provide personal health details, and submit voice samples in a simple and user-friendly manner.

Once the input data is collected, it is forwarded to three core processing modules that operate in parallel. The Prescription NLP and Knowledge Base Module processes medical prescriptions using natural language processing techniques to extract important details such as medicine names, dosage instructions, and safety precautions. This module converts complex medical information into simplified explanations that are easy for users to understand. At the same time, the Wellness and Workout Planning Module analyzes the user's health condition and goals to generate personalized exercise routines, rest schedules, and lifestyle recommendations. These plans are adaptive and can be updated based on changes in the user's health or emotional state.

In parallel, the Voice Emotion and Stress Detection Module analyzes voice input to identify emotional patterns, stress levels, and mood changes by examining tone and speech characteristics. This enables early detection of stress or anxiety without requiring manual reporting from the user. The outputs from all three modules are securely stored in the Data Storage and Logging Module, which maintains user profiles, prescription history, wellness plans, and emotional health logs for continuous monitoring and future reference.

The AI Health Assistant accesses the consolidated data from the storage module to generate personalized insights, guidance, and responses. By combining physical health data with mental health indicators, the assistant provides holistic and context-aware healthcare support. This integrated architecture ensures accurate information delivery, personalization, and continuous health monitoring within a single intelligent platform.

The Proposed AI-based Healthcare Assistant employs multiple intelligent algorithms to interpret prescriptions, personalize wellness plans, and analyze voice-based mental health. The core algorithms used in this system include Natural Language Processing (NLP) techniques, a Knowledge Base–driven retrieval algorithm, BMI-based statistical analysis, and deep learning–based emotion recognition using CNN–LSTM models. These algorithms enable automated understanding, personalization, and accurate health guidance without manual intervention.

### 5.1. Natural Language Processing (NLP) Algorithm

Natural Language Processing is the primary algorithm used to interpret medical prescriptions. NLP techniques automatically extract meaningful medical information from unstructured prescription text through tokenization and rule-based parsing, eliminating the need for manual interpretation. For an input prescription text  $T$ , tokenization is defined as:

$$T = \{t_1, t_2, t_3, \dots, t_n\}$$

where:

$T$ =input prescription text

$t_n$ = extracted tokens

The NLP algorithm consists of:

- Tokenization to divide prescription text into meaningful words and symbols
- Regular expression–based parsing to identify dosage patterns and medical abbreviations
- Named Entity Recognition (NER) as an extension to detect medicine names and medical terms

This hierarchical text processing enables accurate extraction of prescription details and conversion of complex medical information into simplified explanations for users.

### 5.2. Knowledge Base–Driven Drug Information Algorithm

A knowledge base–driven algorithm is used to provide reliable and structured information about medicines. The drug names extracted by the NLP algorithm are mapped to a JSON-based knowledge base that contains drug descriptions, side effects, and safety warnings. The knowledge base algorithm involves:

- Matching extracted drug entities with stored drug records
- Retrieving medicine descriptions, precautions, and warning details
- Presenting simplified and user-friendly explanations

### 5.3. BMI-Based Wellness Assessment Algorithm

For personalized wellness planning, the system uses a Body Mass Index (BMI)-based statistical algorithm to assess the user's physical health condition. BMI is calculated using the standard formula:

$$BMI = \frac{Weight \ (kg)}{Height \ (m)^2}$$

where:

Weight = user weight in kilograms

Height = user height in meters

Based on the computed BMI, users are categorized into standard health classes, such as underweight, normal, overweight, or obese. This classification supports the generation of appropriate exercise routines, rest schedules, and lifestyle recommendations.

### 5.4. Audio Feature Extraction Using MFCC

The voice-based mental health analysis module employs Mel-Frequency Cepstral Coefficients (MFCCs) to extract relevant features from user speech signals. MFCCs capture important speech characteristics such as tone, pitch variation, and frequency distribution. The MFCC extraction process includes:

- Framing and windowing of audio signals
- Fast Fourier Transform (FFT) computation
- Mel-scale filter bank application
- Cepstral coefficient generation

### 5.5. Deep Learning-Based Emotion Recognition Algorithm (CNN–LSTM)

Emotion and stress detection is implemented conceptually using a deep learning model that combines Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. CNN layers extract spatial patterns from MFCC feature representations, while LSTM layers model temporal dependencies in speech signals. The CNN–LSTM architecture consists of:

- CNN layers for automatic feature extraction from MFCC inputs
- LSTM layers for capturing temporal emotion patterns
- Fully connected layers for emotion and stress classification

### 5.6. User Interface Framework (Streamlit)

The system's user interface is developed using the Streamlit framework, which enables rapid creation of interactive web-based applications in Python. Streamlit manages user inputs, displays system outputs, and ensures smooth interaction between frontend components and backend processing modules.

## 6 EXPERIMENTAL SETUP

The experimental setup of the proposed Automatic Liver Cancer Detection System is designed to evaluate the performance of deep learning-based liver cancer classification under realistic clinical conditions. The experiments assess the system's effectiveness in accurately detecting cancerous and non-cancerous liver tissue from CT and MRI images using Deep Convolutional Neural Networks. The evaluation is carried out using appropriate hardware resources, software frameworks, datasets, and standardized performance metrics.

### 6.1 Hardware Requirements

The experimental analysis of the proposed AI-based Healthcare Assistant was conducted on a computing platform with the following hardware specifications:

- Processor: Intel Core i5 / i7 or equivalent
- RAM: 8 GB or higher
- GPU: NVIDIA GPU with CUDA support (optional, for accelerated model inference)
- Storage: Minimum 256 GB
- Display: Standard monitor for system interaction and result visualization

## 6.2. Software Environment

This software stack supports prescription interpretation, wellness planning, voice analysis, and interactive user interface development.

- Operating System: Windows 10 / Linux
- Programming Language: Python
- Web Framework: Streamlit
- Natural Language Processing Libraries: NLTK, spaCy
- Machine Learning / Deep Learning Libraries: TensorFlow / PyTorch, Scikit-learn
- Audio Processing Library: Librosa
- Development Tools: Jupyter Notebook, PyCharm

## 6.3 Dataset Description

The proposed system was evaluated using multiple types of input data relevant to healthcare assistance. The dataset includes Cancerous liver images.

- Text-based medical prescriptions (synthetic and sample prescriptions)
- User health details such as height, weight, age, and goals
- Voice samples representing different emotional states (stress, calm, neutral)
- Drug information stored in a structured JSON-based knowledge base

The data was used to validate prescription interpretation accuracy, wellness recommendation logic, and emotion detection functionality.

## 6.4 Model Training and Configuration

The Deep Convolutional Neural Network model was trained using labeled liver CT/MRI images. Transfer learning techniques using pretrained models such as ResNet or VGG were applied to improve learning efficiency and accuracy. Hyperparameters including learning rate, batch size, number of epochs, and optimizer settings were tuned based on validation performance. Optimization algorithms such as Adam were employed to minimize loss and stabilize training. Regularization techniques were used to prevent overfitting and ensure robust performance on unseen data.

## 6.5 Experimental Procedure

The experimental workflow followed the steps outlined below:

1. Collect user input through the user interface
2. Process prescription text using NLP techniques
3. Retrieve medicine information from the knowledge base
4. Compute BMI and generate personalized wellness plans
5. Extract MFCC features from voice input
6. Analyze emotional state using the emotion recognition module
7. Store all outputs in the data storage and logging module
8. Display personalized insights through the AI Health Assistant

## 6.6 Performance Evaluation

The performance of the proposed system was evaluated using standard classification metrics, including accuracy, precision, recall, F1-score, and confusion matrix analysis. Training and validation accuracy and loss curves were analyzed to assess model convergence and generalization capability. The experimental results demonstrate that the proposed DCNN-based system achieves high accuracy, low error rates, and reliable liver cancer detection performance across different test cases.

## 7 RESULTS AND DISCUSSION

The results of the proposed AI-Driven Smart Healthcare Assistant are presented and discussed based on the outputs obtained from the developed Streamlit-based application. The system was evaluated across three major functional modules: Prescription Interpretation, Personalized Wellness Planning, and Voice-based Stress and Emotion Detection. The corresponding outputs are illustrated using screenshots captured during real-time system execution.

## 7.1. Prescription Interpretation Results

The prescription analyzer module successfully processes structured prescription text and extracts detailed medicine information. As shown in Fig. 1, the system correctly identifies *Amoxicillin* and displays dosage, frequency, duration, purpose, side effects, warnings, and drug interactions in a structured and user-friendly format. Similarly, Fig. 2 demonstrates accurate interpretation of *Paracetamol*, including liver-related warnings and interaction details.

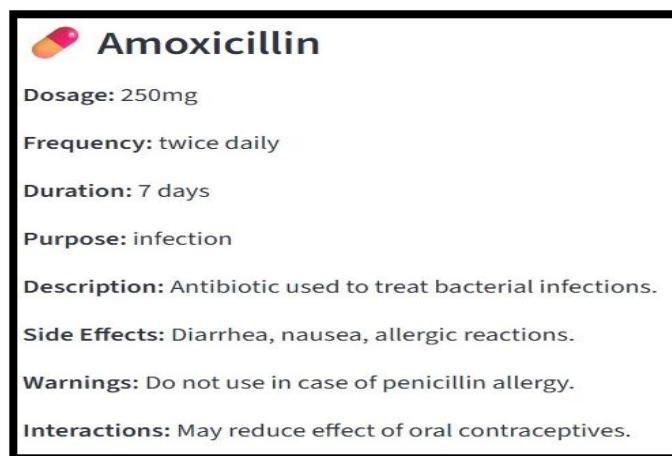


Fig. 1. Prescription interpretation Result for Amoxicillin

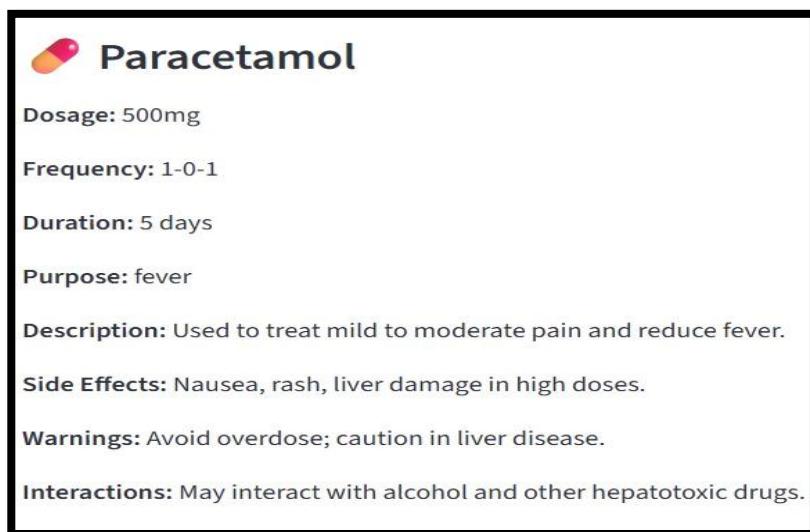


Fig. 2. Prescription interpretation Result for Paracetamol

These results confirm that the NLP and Knowledge Base module effectively converts complex prescription text into simplified explanations, reducing user confusion and improving medication safety.

## 7.2 Personalized Wellness and Workout Planning Results

The wellness planning module generates personalized health recommendations based on user inputs, including age, gender, height, weight, and known medical conditions. As shown in Fig. 3, the system accurately computes the BMI of 24.22, classifies it as Normal, and adapts the plan to account for conditions such as diabetes and hypertension.

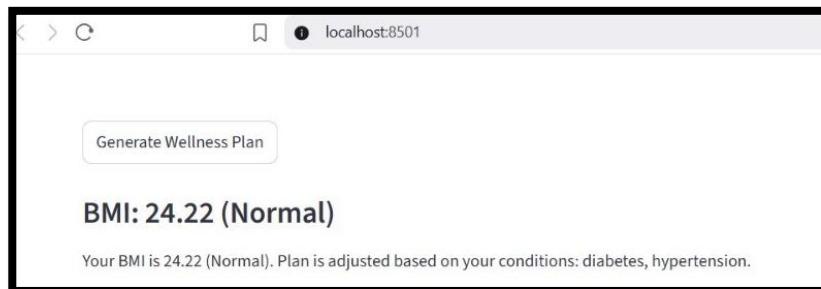


Fig. 3. Personalized wellness plan with BMI calculation

Fig. 4 presents a daily to-do list that includes hydration, sleep schedule, diet control, and monitoring advice. At the same time, Fig. 5 shows recommended low-to-moderate-intensity workouts, such as brisk walking, with safety precautions. These results demonstrate that the BMI-based algorithm and rule-driven wellness logic generate safe, relevant, and condition-aware recommendations.

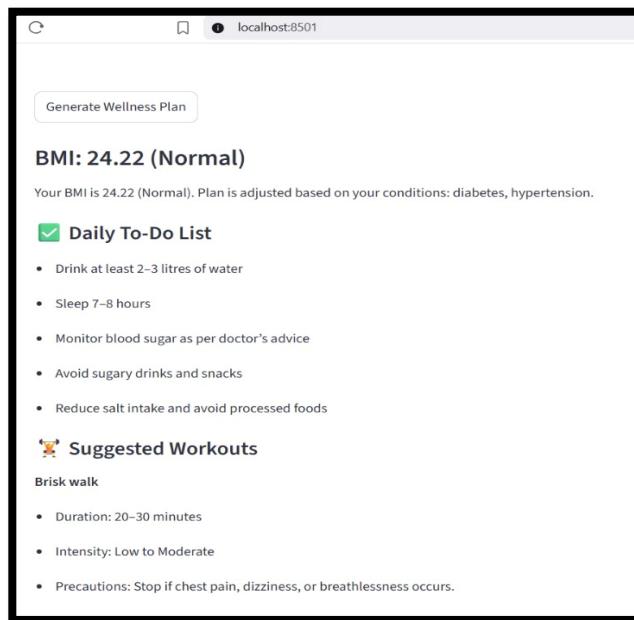


Fig.4: Daily to-do list and lifestyle recommendations

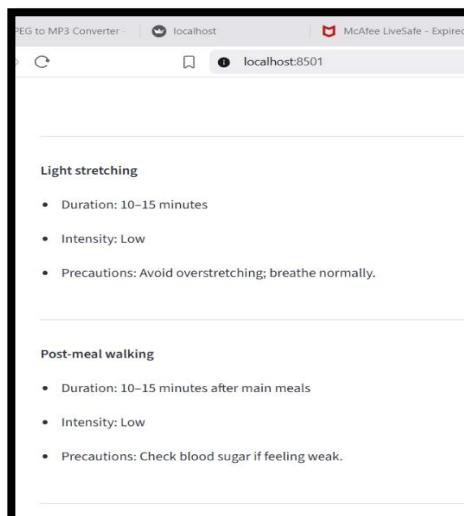


Fig.5: Suggested workouts based on health conditions

### 7.3. Voice-Based Stress and Emotion Detection Results

The voice analysis module evaluates uploaded audio samples to detect emotional and stress patterns. As illustrated in Fig. 6, the system successfully identifies the primary emotion as *Stressed*, along with a stress score of 0.78 and an anxiety score of 0.65. A contextual remark suggesting relaxation techniques is also generated.

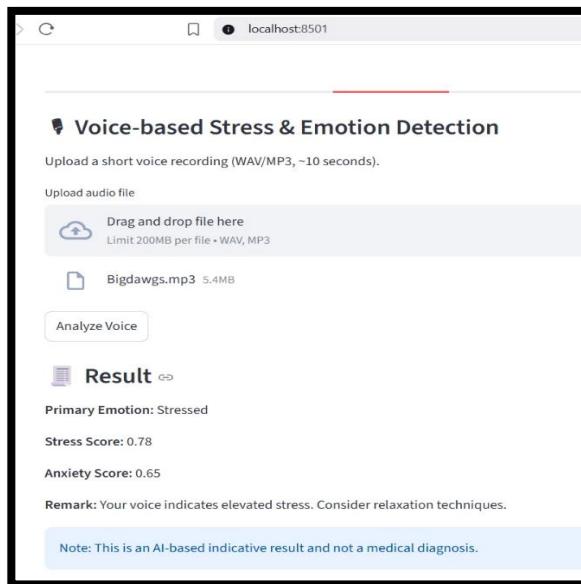


Fig. 6. Voice-based Stress and Emotion Detection

This result confirms the effectiveness of MFCC feature extraction combined with CNN–LSTM-based emotion recognition, enabling early detection of stress without requiring manual emotional input.

### 7.4 System Interface and Integration Results

Fig. 7 and Fig. 8 show the unified Streamlit-based user interface, where users can seamlessly navigate among the prescription analysis, wellness planning, and voice stress detection modules. The smooth interaction and real-time output generation demonstrate effective system integration and usability.



Fig.7. Prescription Analyzer interface

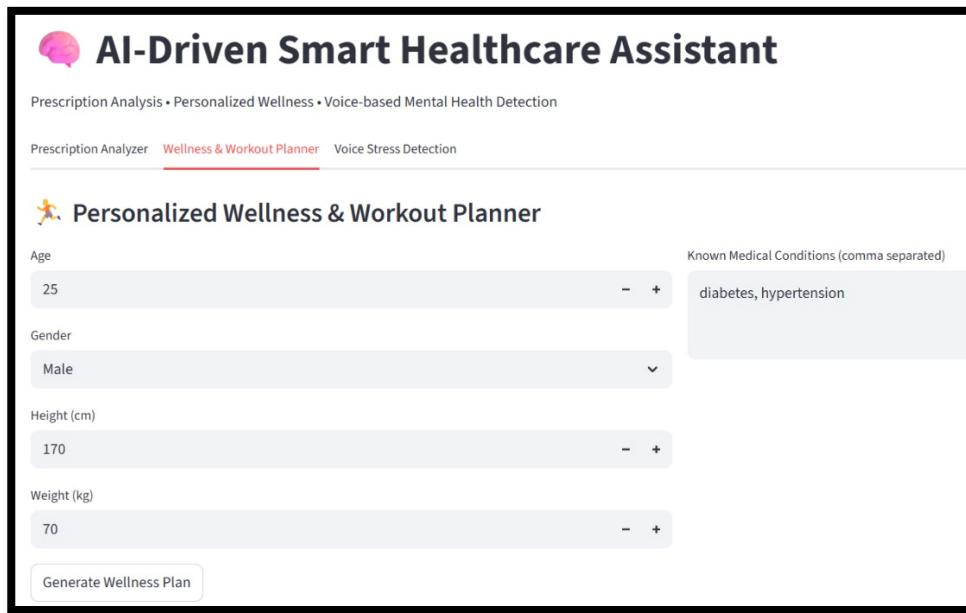


Fig. 8. Wellness & Workout Planner interface

## 8 CONCLUSIONS

This project successfully presented the design and implementation of an AI-Driven Smart Healthcare Assistant aimed at improving health awareness, personalization, and early mental health support. The system effectively integrates prescription interpretation, personalized wellness and workout planning, and voice-based stress and emotion detection into a single intelligent platform, addressing the limitations of existing isolated healthcare tools. The experimental results demonstrate that the proposed system accurately interprets medical prescriptions and converts complex medical terminology into simplified, user-friendly explanations. The integration of a structured knowledge base ensures reliable information delivery, including dosage instructions, side effects, warnings, and drug interactions, thereby reducing the risk of medication misuse. The personalized wellness and workout planning module effectively analyzes user health parameters such as BMI, age, and existing medical conditions to generate adaptive lifestyle recommendations. The results confirm that the system provides safe, relevant, and condition-aware wellness guidance, promoting long-term physical well-being. The voice-based stress and emotion detection module successfully identifies emotional patterns and stress levels using speech analysis. The ability to detect stress and anxiety without manual input highlights the system's potential for early mental health intervention and preventive care. The proposed system demonstrates accurate functionality, seamless module integration, and user-friendly interaction, making it a practical and scalable solution for personal healthcare assistance. By combining physical and mental health insights, the AI-Driven Smart Healthcare Assistant contributes to improved health literacy, proactive wellness management, and holistic healthcare support.

### FUNDING INFORMATION

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

### ETHICS STATEMENT

This study did not involve human or animal subjects and, therefore, did not require ethical approval.

### STATEMENT OF CONFLICT OF INTERESTS

The authors declare that they have no conflicts of interest related to this study.

### LICENSING

This work is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/).

### REFERENCES

- [1] M. A. Haque and H. R. Siddique, "Generative artificial intelligence and large language models in smart healthcare applications: Current status and future perspectives," *Computational Biology and Chemistry*, vol. 120, no. Pt 1, p. 108611, Jul. 2025, doi: 10.1016/j.compbiochem.2025.108611.
- [2] A. Rawat, R. Verma, and N. Dhanda, "AI-based blockchain for smart healthcare system," in *Elsevier eBooks*, 2025, pp. 273–288. doi: 10.1016/b978-0-443-36434-1.00022-7.
- [3] R. Salama and F. Al-Turjman, "Machine learning and AI for the smart healthcare," in *Elsevier eBooks*, 2025, pp. 37–45. doi: 10.1016/b978-0-443-34226-4.00003-4.

- [4] B. K. M. Wong, S. Vengusamy, and T.-Y. Lim, "Smart healthcare: Setting the new norm moving forward," in *Elsevier eBooks*, 2025, pp. 27–54. doi: 10.1016/b978-0-443-27444-2.00004-6.
- [5] J. B. Awotunde, C. Chakraborty, M. AbdulRaheem, R. G. Jimoh, I. D. Oladipo, and A. K. Bhoi, "Internet of medical things for enhanced smart healthcare systems," in *Elsevier eBooks*, 2023, pp. 1–28. doi: 10.1016/b978-0-323-91916-6.00009-6.
- [6] A. Corsi, F. F. De Souza, R. N. Pagani, and J. L. Kovaleski, "Ultimate approach and technologies in smart healthcare: A broad systematic review focused on citizens," *Smart Health*, vol. 26, p. 100310, Aug. 2022, doi: 10.1016/j.smh.2022.100310.
- [7] M. AbdulRaheem, I. D. Oladipo, A. González-Briones, J. B. Awotunde, A. R. Tomori, and R. G. Jimoh, "An efficient lightweight speck technique for edge-IoT-based smart healthcare systems," in *Elsevier eBooks*, 2022, pp. 139–162. doi: 10.1016/b978-0-323-90548-0.00005-x.
- [8] S. K. Shahzad, D. Ahmed, M. R. Naqvi, M. T. Mushtaq, M. W. Iqbal, and F. Munir, "Ontology driven smart health service integration," *Computer Methods and Programs in Biomedicine*, vol. 207, p. 106146, May 2021, doi: 10.1016/j.cmpb.2021.106146.
- [9] R. K. Bhadaria, J. Saha, S. Biswas, and C. Chowdhury, "IoT-based location-aware smart healthcare framework with user mobility support in normal and emergency scenario: a comprehensive survey," in *Elsevier eBooks*, 2020, pp. 137–161. doi: 10.1016/b978-0-12-819664-9.00007-7.
- [10] R. Patan, G. S. P. Ghantasala, R. Sekaran, D. Gupta, and M. Ramachandran, "Smart healthcare and quality of service in IoT using grey filter convolutional based cyber physical system," *Sustainable Cities and Society*, vol. 59, p. 102141, Apr. 2020, doi: 10.1016/j.scs.2020.102141.
- [11] V. Gopi, C. Vedhasree, K. V. V. Reddy, K. R. Sai, S. Nishitha, and S. E. Reddy, "Development of Sign Language Translator based on Gesture-to-Word Conversion," *International Journal of Emerging Research in Science Engineering and Management*, vol. 1, no. 6, pp. 63–69, Dec. 2025, doi: 10.58482/ijersem.v1i6.8.
- [12] A. Bohr and K. Memarzadeh, "The rise of artificial intelligence in healthcare applications," in *Elsevier eBooks*, 2020, pp. 25–60. doi: 10.1016/b978-0-12-818438-7.00002-2.
- [13] A. Surekha, S. Sandhya, M. S. Jeeva, B. Mahesh, K. M. Dhanvanthar, and S. S. Valli, "Women's Safety Device with GPS Tracking and Alerts," *International Journal of Emerging Research in Science Engineering and Management*, vol. 1, no. 6, pp. 1–10, Dec. 2025, doi: 10.58482/ijersem.v1i6.1.