

Digital Campus Mapping and Navigation Solution

¹M.Manivannan, ²Goddindla Jayasree, ³C Hemalatha,
⁴Chembeti Charishma, ⁵Namathati Koushik, ⁶Gandam Mukesh

Department of CSE, Siddartha Institute of Science and Technology, Puttur, India

¹sistkcse.manivannan@gmail.com, ²bhanusreegoddindla@gmail.com, ³chandrasekharhema575@gmail.com,
⁴chembeticharishma@gmail.com, ⁵koushikseenu40@gmail.com, ⁶gandhamukesh13@gmail.com

Abstract: Large campuses comprising educational institutions can be difficult to navigate, with numerous buildings and departments, and conventional solutions such as physical maps or static signage are generally unreliable and do not provide valid, up-to-the-minute directions. A project should involve developing a "Digital Campus Mapping and Navigation Solution" with a Java backend and an interactive web interface, providing an innovative user experience. The project will utilize an accurate digital map of the campus, the capabilities of location-based services, and advanced routing algorithms to compute the best possible routes among different classrooms, laboratories, administrative offices, and other university facilities. The service will be accessible via common web browsers and will allow users to look up locations, view digital maps, and obtain turn-by-turn directions. Additional functionality such as indoor positioning via QR codes will make the service even more convenient and increase its appeal.

Keywords: Campus Navigation, Digital Mapping, Indoor Navigation, Outdoor Navigation, Location-Based Services.

1 INTRODUCTION

Large-scale educational institutions such as universities and technical institutions often have sprawling campuses and may include many buildings, departments, classrooms, laboratories, libraries, and administrative offices. For students, faculty, and newcomers to the campus, such complexes can be confusing and time and resource-consuming to navigate. Conventional ways of navigating institutions, such as maps, notice boards, and static signage, tend to be outdated and unable to provide real-time information and guidance. Because of the ever-increasing reliance on technological advancements and intelligent infrastructures, there emerges a pressing need for intelligent campus navigation solutions that can provide accurate and interactive guidance in a real-time manner [1]. Online and location-based campus navigation solutions can greatly improve campus mobility by efficiently directing individuals to their desired destinations.

This can be of great value to first-time visitors on campus, differently abled persons, and during events where the campus crowd movement has to be effectively managed. Technological improvements in the web, geographic information systems, and location-based services platforms have facilitated the development of online mapping solutions that can be readily accessed through any device connected to the internet [2]. These technologies include campus mapping, route calculation, and directional mapping functionalities, which can be achieved through the convergence of intelligent routing algorithms in creating routing solutions based on accessibility needs, distance, or user preference.

This proposal is about building a Digital Campus Mapping and Navigation System with Java as the backend technology and web technology for the front end [3]. This system would provide an interactive and friendly platform for navigation. This system is capable of offering an in-depth digital map of the campus. This system also features location search capabilities for classrooms, labs, faculty office spaces, and other facilities. After determining the destination, this system also displays the most effective route to take.

Inclusion options like indoor positioning using QR codes, real-time alerts, and accessibility-friendly routing options add to the utility and inclusivity the system has to offer. The system is designed to address different needs of the users while adapting to the dynamic environment that the campus presents. In general, the system has the potential to eliminate campus navigation issues and create a new-age solution that makes campus navigation smooth and effortless.

2 LITERATURE REVIEW

Navigation and wayfinding within large institutional campuses have been widely studied due to the increasing size and complexity of educational environments.

Early campus navigation solutions primarily relied on static paper maps, directories, and signboards, which provided limited guidance and required users to manually interpret routes. Several studies have highlighted that such traditional methods often lead to confusion, inefficient movement, and a poor user experience, especially for first-time visitors and on large campuses with frequent layout changes. With the advancement of Geographic Information Systems (GIS), researchers began developing digital mapping solutions for campuses. GIS-based campus maps allowed spatial data visualization and basic route planning. While these systems improved map accuracy and usability compared to static maps, they were often desktop-based, lacked interactivity, and did not support real-time navigation or user-centric routing [1][4].

The rise of web-based mapping technologies led to the development of online campus navigation systems accessible through browsers. Studies demonstrated that integrating web maps with search functionality significantly improved user experience by enabling users to locate buildings, departments, and facilities easily. However, many early web-based solutions were limited to outdoor navigation and depended heavily on external mapping services, which often lacked precise indoor layout information. Research has also explored mobile-based campus navigation applications using GPS for outdoor positioning. These applications offered turn-by-turn navigation and location tracking, similar to city navigation systems. However, GPS accuracy degrades significantly indoors, making it unsuitable for navigating inside buildings such as academic blocks, libraries, or laboratories. This limitation prompted further research into indoor navigation techniques.

To address indoor navigation challenges, researchers proposed QR code-based and Wi-Fi-based indoor positioning systems. QR code-based navigation systems enable users to scan codes placed at strategic locations to determine their current position. Studies have reported that QR-based solutions are cost-effective, easy to deploy, and reliable in indoor environments, though they require physical infrastructure maintenance [5]. Wi-Fi fingerprinting and Bluetooth beacon-based systems were also studied, offering continuous indoor positioning but often involving higher deployment and maintenance costs. Several works have focused on intelligent routing algorithms for navigation systems. Algorithms such as Dijkstra's and A* were widely used to compute shortest paths within campus road networks and building layouts. Researchers demonstrated that intelligent routing significantly reduces travel time and improves navigation accuracy. Some studies further extended routing algorithms to consider accessibility constraints, such as wheelchair-friendly paths, elevators, and ramps [6].

Accessibility-aware navigation has gained increasing attention in recent research. Studies emphasized the importance of inclusive navigation systems that support users with physical disabilities by avoiding stairs, uneven paths, or restricted areas. Such research highlights the need for customizable routing options within campus navigation systems [7]. More recent studies have explored real-time updates and dynamic navigation, in which temporary obstructions, construction zones, or crowd density are accounted for during route generation. Although promising, many such systems remain experimental and are not fully integrated into web-based campus platforms.

Despite these advancements, existing solutions often suffer from fragmentation, limited indoor navigation support, lack of real-time updates, or dependency on external services. Many systems are platform-specific and do not offer a unified, web-based solution with flexible backend support [8]. These limitations motivate the proposed Campus Navigation System with a Java-based backend and web-based frontend, which aims to integrate digital campus mapping, intelligent routing, indoor navigation support, and accessibility-aware features into a single, scalable platform. By leveraging web technologies and modular backend services, the proposed system aims to provide accurate, user-friendly, and real-time navigation to enable seamless campus mobility.

3 DIGITAL COMPONENTS AND FUNCTIONAL MODULES OF THE CAMPUS NAVIGATION SOLUTION

Efficient campus navigation depends on integrating multiple digital components, including spatial mapping, location services, routing intelligence, and user interaction modules. The proposed Campus Navigation System combines web technologies, backend services, and optional positioning mechanisms to provide accurate, real-time, and user-friendly navigation across large educational campuses [8]. Each module contributes to seamless mobility, accessibility, and an improved wayfinding experience for users.

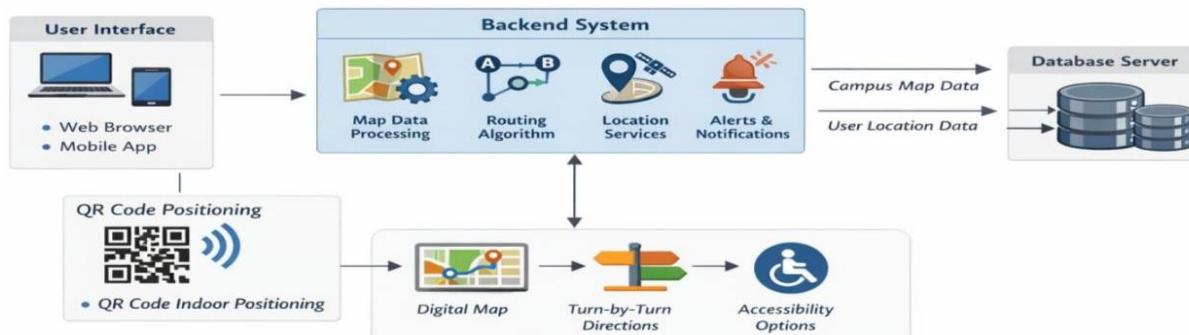


Fig. 1. Architecture of Digital Campus Papping and Navigation Solution

3.1. Digital Campus Map Generation

The digital campus map forms the foundation of the navigation system. It contains a detailed spatial representation of campus infrastructure, including academic buildings, classrooms, laboratories, libraries, administrative offices, roads, walkways, and landmarks [9]. The map is created using structured spatial data and rendered interactively on the web-based frontend. Accurate digital mapping ensures users can visualize the campus layout and the spatial relationships between locations.

3.2. Location Search and Place Identification Module

This module enables users to search for specific destinations such as classrooms, faculty offices, labs, or facilities using keywords or category filters. Each location is associated with metadata including building name, floor number, department, and coordinates. The search functionality improves navigation efficiency by allowing users to quickly identify destinations without manually browsing the entire campus map [10].

3.3. Intelligent Routing and Pathfinding Algorithms

The routing module uses intelligent pathfinding algorithms such as Dijkstra's or A* to compute the most optimal route between a source and destination. Routes are generated based on shortest distance, walkability, and user preferences. The system dynamically calculates paths across roads, corridors, stairways, and pathways, ensuring accurate step-by-step navigation guidance throughout the campus.

3.4. Web-Based User Interface and Interaction Layer

The web-based frontend provides an interactive and user-friendly interface accessible through standard web browsers. Users can view the campus map, zoom into specific areas, select locations, and follow navigation instructions [11]. Visual cues such as highlighted paths, markers, and directional indicators enhance usability and reduce navigation confusion, especially for first-time users.

3.5. QR Code-Based Indoor Positioning Support

To overcome the limitations of GPS in indoor environments, the system optionally integrates QR code-based positioning. QR codes placed at strategic indoor locations allow users to scan and determine their current position within buildings. This method provides reliable indoor navigation support without expensive infrastructure, improving accuracy in classrooms, corridors, and laboratories.

3.6. Accessibility-Aware Routing and Real-Time Updates

The system supports accessibility-aware routing by considering ramps, elevators, and wheelchair-friendly paths when generating routes [12]. This ensures inclusive navigation for users with mobility challenges. Additionally, real-time updates such as blocked pathways, construction zones, or temporary changes can be reflected in the routing logic, enhancing navigation accuracy and safety.

4 COMPARATIVE EVALUATION AND DISCUSSION

The effectiveness of a campus navigation system depends on several factors, such as mapping accuracy, routing intelligence, positioning techniques, user interface design, and real-time adaptability. This section presents a comparative evaluation of traditional campus navigation methods and modern digital navigation approaches, highlighting the performance and advantages of the proposed Digital Campus Mapping and Navigation System based on reported studies and practical observations.

4.1. Navigation Method Comparison

Campus navigation effectiveness is largely influenced by the type of navigation method employed. Traditional methods such as paper maps, static signboards, and manual directions provide only limited and static information. In contrast, digital navigation systems offer interactive maps, searchable locations, and dynamic route generation. Table-based comparisons in prior studies show that web-based and location-aware navigation systems significantly outperform traditional methods in terms of accuracy, ease of use, and time efficiency.

4.2. Discussion of Results

Based on a comparative analysis, digital campus navigation systems demonstrate clear advantages over conventional navigation aids. Interactive digital maps enable users to visualize campus layouts more intuitively, while intelligent routing algorithms reduce travel time between locations. The proposed system's integration of search functionality and step-by-step navigation significantly improves wayfinding efficiency, especially for first-time visitors and newly admitted students. Optional indoor positioning using QR codes further enhances accuracy within buildings, addressing a major limitation of GPS-based navigation. Overall, the results indicate that digital navigation solutions provide a more reliable, user-friendly, and scalable approach to campus mobility.

4.3. Factors Affecting Navigation Accuracy and Performance

Several factors influence the performance of campus navigation systems:

- **Map Data Accuracy:** Outdated or incomplete spatial data can lead to incorrect routing and confusion.
- **Routing Algorithm Efficiency:** The choice of pathfinding algorithm affects route optimality and response time.
- **Indoor vs Outdoor Positioning:** GPS works well outdoors but is unreliable indoors, necessitating alternative methods such as QR codes or beacons.
- **Real-Time Updates:** Construction zones, blocked pathways, or temporary changes impact navigation accuracy if not updated dynamically.
- **User Interface Design:** Clear visual cues and intuitive interaction significantly affect usability and user satisfaction.

5 EXPERIMENTAL RESULTS

Fig. 2 illustrates the working interface of the Smart Campus Navigation system developed in this study. Fig. 2 demonstrates how the digital campus map is rendered through the web-based interface, showing key campus entities such as buildings, pathways, and landmarks. Users can visually identify their current position and select a destination using the search and map interaction features. The highlighted route represents the optimal path computed by the routing algorithm based on the selected source and destination. Fig. 3 validates the successful integration of digital mapping, location search, and route visualization modules within the proposed system. It also demonstrates the system's ability to provide clear visual guidance, which is essential for effective campus navigation and improved user experience.

Fig. 3 presents the step-by-step navigational guidance generated for room-to-room navigation within the campus. Fig. 3 shows sequential navigation instructions that guide the user from an origin location to a specific destination, such as a classroom or laboratory. Each step corresponds to a segment of the computed route, ensuring clarity in movement through corridors, intersections, and pathways. Fig. 3 highlights the practical functionality of the intelligent routing and navigation module, especially in handling indoor and short-distance navigation scenarios. The visualization confirms that the system can provide structured, easy-to-follow navigation instructions, reducing user confusion and improving navigation accuracy within complex campus environments.

Fig. 2. Smart Campus Navigation

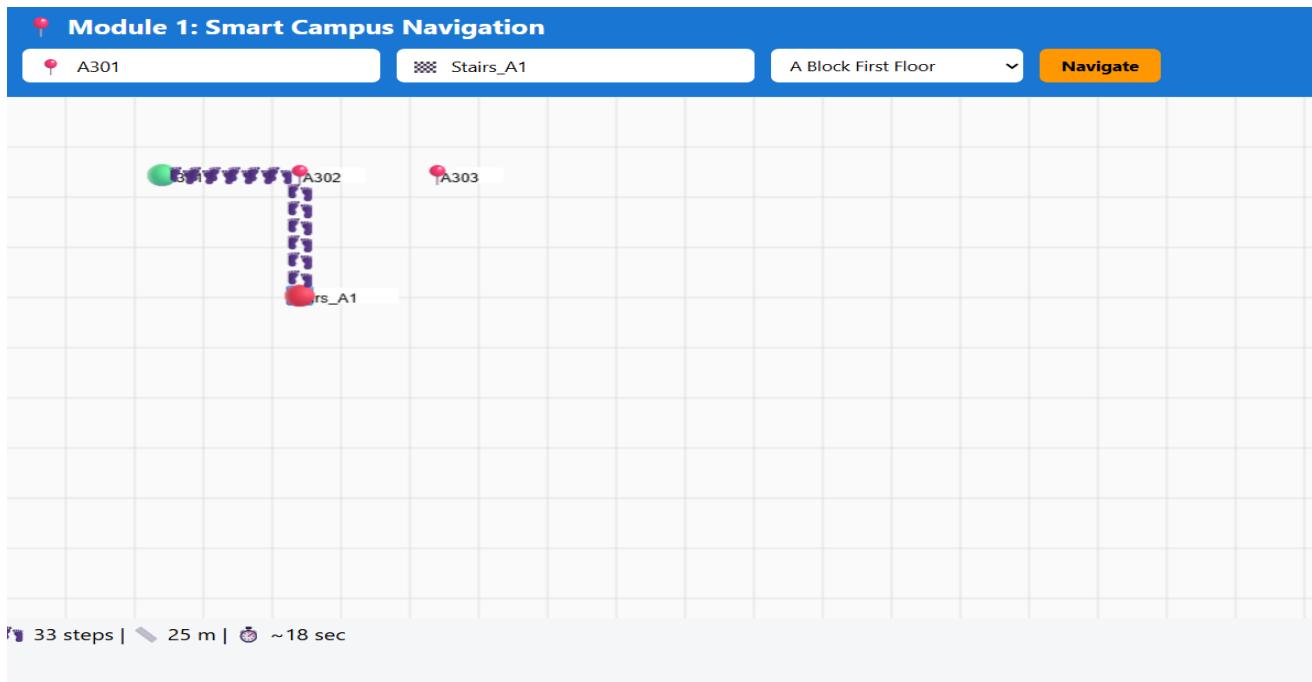


Fig. 3. Navigational Steps for Room to Room

6 CONCLUSION

The Campus Navigation System proposed in this project is intended to address the growing challenge of navigating an increasingly large and complex educational campus. Conventional methods such as paper maps and fixed direction signs may not always prove adequate, especially when dealing with visitors and physically challenged visitors or students who may still not be very conversant with the campus routes and facilities offered on campus. The system combines a digital map of the campus with location-based functionality to help users search for points of interest, display maps, and guide them to their destinations step-by-step via an online interface. The addition of pathfinding functionality ensures that optimal routes are calculated quickly, saving time and preventing disorientation. Other extensions, such as indoor location positioning via QR codes, help to improve the accuracy of the above-mentioned functionalities, especially within indoor settings where GPS technology fails.

The proposed system enhances the user experience through real-time assistance, dynamic visualization, and one-point access to location information in the campus environment. The Java-powered backend environment, along with the graphical user interface technology used in the proposed system, ensures scalability, maintainability, and simplicity in implementation in different educational setups. The proposed system, therefore, enhances a user-friendly campus environment. Thus, the Campus Navigation System is a manifestation of how advanced technologies can redefine traditional campus navigation and provide efficient and accessible services in this domain as well. Currently, it is a platform that offers a sound basis for advancements in services such as context-aware and personalized campus navigation, as well as smart campus infrastructure support in the future, which will directly contribute to seamless mobility in campuses and positive experiences for all users, as well as their facilitation.

FUNDING INFORMATION

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

ETHICS STATEMENT

This study did not involve human or animal subjects and, therefore, did not require ethical approval.

STATEMENT OF CONFLICT OF INTERESTS

The authors declare that they have no conflicts of interest related to this study.

LICENSING

This work is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/).

REFERENCES

[1] P. L. Salins, G. Anandan, B. D. Ananda, B. Reshma, and R. D. Jathanna, "Internet of Things-Based Wayfinding for Hospital visitors: a digital solution for complex health care infrastructures," *Mayo Clinic Proceedings Digital Health*, vol. 3, no. 4, p. 100293, Oct. 2025, doi: 10.1016/j.mcpdig.2025.100293.

- [2] R. E. Parra-Galaviz *et al.*, "Ultralight aircraft and conventional digital cameras as an alternative for urban mapping," *Transportation Research Interdisciplinary Perspectives*, vol. 29, p. 101339, Jan. 2025, doi: 10.1016/j.trip.2025.101339.
- [3] M. Haggag *et al.*, "Integrating advanced technologies for sustainable Smart Campus development: A comprehensive survey of recent studies," *Advanced Engineering Informatics*, vol. 66, p. 103412, May 2025, doi: 10.1016/j.aei.2025.103412.
- [4] M. C. Ariganello *et al.*, "Mobility as a Service for University Campuses: a case study at the University of Calabria," *Procedia Computer Science*, vol. 274, pp. 1159–1168, Jan. 2025, doi: 10.1016/j.procs.2025.12.113.
- [5] I. Cárdenas-León, M. Koeva, P. Nourian, and C. Davey, "Urban digital twin-based solution using geospatial information for solid waste management," *Sustainable Cities and Society*, vol. 115, p. 105798, Sep. 2024, doi: 10.1016/j.scs.2024.105798.
- [6] L. M. Barreto and J. A. A. S. Filho, "Applications of digital twins in reinforced and prestressed concrete bridge infrastructure," *Procedia Structural Integrity*, vol. 64, pp. 1168–1175, Jan. 2024, doi: 10.1016/j.prostr.2024.09.163.
- [7] E. Del Soldato and S. Massari, "Creativity and digital strategies to support food cultural heritage in Mediterranean rural areas," *EuroMed Journal of Business*, vol. 19, no. 1, pp. 113–137, Mar. 2024, doi: 10.1108/emjb-05-2023-0152.
- [8] J. Mertes *et al.*, "Experimental evaluation of 5G performance based on a digital twin of a machine tool," *CIRP Journal of Manufacturing Science and Technology*, vol. 55, pp. 141–152, Oct. 2024, doi: 10.1016/j.cirpj.2024.09.012.
- [9] T. Deng, K. Zhang, and Z.-J. Shen, "A systematic review of a digital twin city: A new pattern of urban governance toward smart cities," *Journal of Management Science and Engineering*, vol. 6, no. 2, pp. 125–134, Mar. 2021, doi: 10.1016/j.jmse.2021.03.003.
- [10] J. C. K. Tham *et al.*, "Metaphors, Mental Models, and Multiplicity: Understanding student perception of digital literacy," *Computers & Composition/Computers and Composition*, vol. 59, p. 102628, Jan. 2021, doi: 10.1016/j.compcom.2021.102628.
- [11] S. Thomas *et al.*, "Creating a digital toolkit to reduce fatigue and promote quality of life in multiple sclerosis: Participatory Design and Usability study," *JMIR Formative Research*, vol. 5, no. 12, p. e19230, Sep. 2021, doi: 10.2196/19230.
- [12] P. Dasler, S. Malik, and M. L. Mauriello, "'Just Follow the Lights': a ubiquitous framework for Low-Cost, mixed fidelity navigation in indoor built environments," *International Journal of Human-Computer Studies*, vol. 155, p. 102692, Jul. 2021, doi: 10.1016/j.ijhcs.2021.102692.